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An Approximation-Theoretic Characterization
of Uniformly Rotund Spaces

INTRODUCTION

Let X be a Banach space and Me X a closed subspace of X. We call M a
Chebyshev subspace if for each x E X there exists a unique iii E M such that

I! x - iii II = dist(x, M) = inf{11 x - mill mE M} = II x + Mil;

in other words if each x E X has a unique best approximation in M, then, the
map that associates with each x E X its unique best approximation in M is
called the best approximation operator on M and is denoted by P(M).

The Soviet mathematician A. L. Garkavi has said [3] "Every geometric
question about Banach spaces has an equivalent expression as an appro­
ximation theoretic question." For example, each closed subspace is a
Chebyshev subspace iff X is rotund and reflexive [2, 8]. In this note, we give
conditions on best approximation operators equivalent to X being uniformly
rotund (DR) and conditions equivalent to both X and X* being DR (i.e., X
being uniformly rotund and uniformly smooth). A less general version of
this result appeared in [I] in connection with convergence of alternation
sequences.

In general, P(M) may be discontinuous. If X is DR, then, P(M) is
continuous, and in fact, Holmes [4] has shown that in this case, the class of
maps {P(M) IM a closed subspace of X} is uniformly equicontinuous on
bounded sets. We obtain Holmes' theorem as a corollary of our result. If
P(M) is actually uniformly continuous, then M is the range of a continuous
linear projection [6], and so if P(M) is uniformly continuous for each closed
subspace, X is isomorphic to a Hilbert spaCe [7].

A Banach space X, is rotund iff each norm-I linear functional is tangent
to the unit sphere of X at, at most, one point. The uniqueness of best
approximation follows immediately from this definition. If the dual of X is
rotund, then X is smooth, i.e., for each norm-I vector x E X, there is a unique
norm-I linear functional f E X* with f(x) = 1 = II x II. Thus, for a smooth
rotund space we have a well-defined norming map n: S --+ S*, where
n(x)(x) = I, and n(x)(y) < 1 for y # x. Here, S denotes the unit sphere of X
and S* the unit sphere of X*.
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If M is a closed subspace and x E X\M, then m E M is the best approxi­
mation to x iff x - m J... m' for all m' E M. Here, J... denotes orthogonality
in the sense of James [5], i.e., x J... Y iff II x + ay II .?' II x 11 for all real a.
For a norm-l vector in a smooth space this is equivalent to n(x)(y) = 0
because n(x) is the Gateaux derivative of the norm functional at x. Thus,
in smooth rotund reflexive spaces, P(M) is characterized by the fact that
P(M)x EM and n(x - P(M)x) E M.L. Also, since M is a subspace, for any
mE M, P(M)(x + m) = P(M)x + m, and hence, P(M)(x - P(M)x) = O.

There are several equivalent formulations of uniformly rotund. For our
purposes, the following is convenient: X is UR iff for all sequences {Xi}, {Yi}
with 11 Xi II = II Yi II = 1, if II Xi + Yi II -* 2 then II Xi - Yi II -* o.

2. A CHARACTERIZATION OF UR SPACES

THEOREM 1. Let X be a rotund reflexive Banach space. X is UR ifffor every
sequence {Mi } of closed subspaces and every sequence {Xi} with {II Xi II}
convergent such that for some k > 0,

II Xi 11 .?' II Xi - P(Mi) Xi II .?' k,

the following are equivalent:

(a) limi II Xi II = limi II Xi - P(Mi) Xi II,
(b) limi P(Mi) Xi = O.

for all i,

If, in addition, X* is rotund, then X* is also UR iff the following are equivalent
to (a) and (b) for all sequences {Xi} and {Mi} satisfying the hypotheses.

(c) limi II X(Xi) - n(xi - P(Mi) xi)11 = 0,

(d) limi II n(xi) - P(M/) n(xi)11 = 0,

(e) limi 11 n(xi) 1M. II = 0,.
(f) limi n(xi)(mi) = 0 uniformly on bounded sequences {mi} with mi E Mi

for each i.

Proof Suppose (a) and (b) are equivalent and {Xi}, {Yi} are sequences
with II Xi 11 = II Yi II = 1 and II Xi + Yi II -* 2. Let Mi = span{xi - Yi}' We
shall show that limi P(Mi) Xi = limi P(Mi) Yi = 0 and so

Yi - Xi = Yi - Xi + P(Mi)(Xi - P(Mi) Xi)

= P(Mi)(Yi - Xi + Xi - P(Mi) Xi)

= P(Mi) Yi - P(Mi) Xi

also converges to O. This gives UR in X.
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Now, for each i, II Xi - P(Mi) Xi II = II Xi - ,\(Xi - Yi)11 and °:(; Ai :(; 1.
For, if A < 0, then II Xi - A(Xi - Yi)11 ~ (1 + I A I) II Xi II - I A III Yi II = 1,
while if A = 1 + fL, with fL > 0, then II Xi - (1 + fL)(Xi - Yi)11 ~
o + fL) II Yi II - fL II Xi II = 1.

However, if°:(; A :(; 1, then

To show P(Mi) Xi -+ 0, we need only prove that II Xi - A.;(xi - Yi)11 -+
1 = II Xi II. If not, then for some 8 > 0, and some subsequence {Xk}, we have
II Xk - Aixk - Yk)11 < 1 - 8. However, II Xk + Yk II -+ 2, so for k large
enough, II Xk + Yk II > 2 - 8. Thus, I - 8 > 110 - Ak) Xk + AkYk II, and
since °:(; Ak :(; 1, 1 ~ II AkXk + (1 - Ak) Yk II. Adding, we have 2 - 8 >
II Xk + Yk II, a contradiction. Similarly, P(Mi) Yi -+ 0, as required.

Now, assume that conditions (a)-(f) are equivalent, and x* is also rotund.
Let {Ii}, {gi} be sequences in x* with IIIi II = II gi II = I for all i, and
IIIi + gi II -+ 2. Since x* is now rotund and smooth, we may writeli = n(xi)
and gi = n(Yi), where II Xi II = II Yi II = 1.

Again, letting Mi = span{xi - Yi}, we shall show that P(M,.) Xi -+ 0, and
P(Mi) Yi -+ 0.

From condition (c),

and
II n(xi) - n(xi - P(Mi) xi)11 -+ 0,

II n(Yi) - n(Yi - P(Mi) Yi)ll-+ 0.

However, Xi - P(M;) Xi = Yi - P(Mi) Yi , and so

IIIi - gi II = II n(x;) - n(Yi)11

:(; II n(Xi) - n(Yi - P(Mi) Yi)11 + II n(Yi - P(Mi) Yi) - n(Yi)11

= II n(xi) - n(Xi - P(Mi) Xi)11 + II n(Yi - P(Mi) Yi) - n(Yi)ll,

which converges to zero proving DR in X*.
Since II n(xi) + n(Yi)11 -+ 2, for some sequence {Zi} with II Zi II = 1, we have

n(xi)(zi) + n(Yi)(zi) -+ 2. Hence, both n(xi)(zi) and n(Yi)(zi) converge to 1,
and so, limi n(xi)(xi - Zi) = limi n(Yi)(Yi - Zi) = 0.

If II Xi - Zi II is bounded away from zero, then letting N i = span{(xi - Zi)}
and using condition (e), we have P(Ni ) Xi -+ 0. Therefore,

II Xi ~ Zi II = II Xi - i(Xi - Zi)11 ~ II Xi - P(Ni) Xi II

~ II Xi [I - II P(Ni) Xi 11-+ I.
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From the assumed equivalence of (a) and (b), Xis (UR), and so Xi - Zi ---+ O.
Similarly, Yi - Zi ---+ 0, and so Xi - Yi ---+ O. Since P(Mi ) Xi = Ai(Xi - Yi),
where °~ Ai ~ 1, we have P(Mi) Xi ---+ 0, and likewise, P(Mi) Yi ---+ 0.

To show that the conditions are necessary, assume that X is UR and that
{Xi} and {Mi} satisfy the hypotheses. First, note that the implication (b) => (a)
is obvious.

For (a) => (b), we shall show that

and so from UR in X,

and hence, P(Mi) Xi ---+ O.
To show that the sum converges to 2, we note that since P(Mi ) Xi is the

best approximation to Xi in M i ,

Suppose now that X* is also UR and (a) holds. Then,

II n(xi) + n(xi - P(Mi) xi)11 ~ n(xi) (II ~: II) + n(xi - P(Mi) Xi) (II ~: II)

= 1 + II Xi - P(Mi ) Xi II -+ 2
II Xi II '

and (c) follows.
The implication (c) => (d) is clear because n(xi - P(Mi) Xi) E Ml.
It is also obvious that (d) => (e), because Phelps [8] has show that

dist(n(xi)' M/) = II n(xi) IM
i

II·
For (e) => (f) for each i, we have

n(xi)(mi) = n(xi)(mdll mi If) II mi 11 ~ !I n(Xi)IM i I111 mi II.

Finally, assuming (f), we have

II Xi - P(Mi) Xi 11 ~ n(xi)(xi) - n(xi)(P(Mi)(Xi»

= II Xi II - n(xi)(P(Mi)(Xi»,

and since II P(Mi) Xi II < 211 Xi II, condition (a) follows. Q.E.D.
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COROLLARY (Holmes). If X is UR and A is a bounded subset of X, then
for each E > 0, there exists a 8(E, A) > °such that for all closed subspaces
Me X and all x, YEA, ifll x - Y II < S, then II P(M)x - P(M)y II < E.

Proof If the statement does not hold, then we must have bounded
sequences {Xi}' {Yi} and closed subspaces {Mi} such that II Xi - Yi II ~ °while

II P(Mi) Xi - P(Mi) Yi II ~ k > 0, for all i.

Let Zi = Xi - P(Mi) Yi, and Wi = Yi - P(Mi) Xi' From boundedness,
we may assume that II Zi II, II Zi - P(Mi) Zi II, II Wi II, and II Wi - P(Mi) Wi II
all converge. Now,

P(Mi) Zi = P(Mi)(Xi - P(Mi) Yi)

= P(Mi) Xi - P(Mi) Yi ,

and we shall show that P(Mi) Zi ~ 0.
If II Zi II ~ 0, then, since II P(Mi) Zi II ~ 211 Zi II, we are done. Otherwise,

for E > °arbitrary and i large enough, we have

II Zi II + E ~ II Zi - P(Mi) Zi II + E

= II Xi - P(Mi) Yi - P(Mi)(Xi - P(Mi) Yi)11 + E

= II Xi -P(Mi)Xill + E

~ II Xi - P(Mi) Xi II + II Yi - Xi II

~ II Yi - P(Mi) Xi II = II Wi II·

Since the same argument can be repeated beginning with II Wi II + E,

we may conclude that limi II Zi II = limi II Zi - P(Mi) Zi II = limi II Wi II, and
from Theorem 1, P(Mi ) Zi ~0.' Q.E.D.
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