An Approximation–Theoretic Characterization of Uniformly Rotund Spaces

INTRODUCTION

Let X be a Banach space and $M \subseteq X$ a closed subspace of X. We call M a Chebyshev subspace if for each $x \in X$ there exists a unique $\overline{m} \in M$ such that

$$||x - \overline{m}|| = \operatorname{dist}(x, M) = \inf\{||x - m|| | m \in M\} = ||x + M||;$$

in other words if each $x \in X$ has a unique best approximation in M, then, the map that associates with each $x \in X$ its unique best approximation in M is called the best approximation operator on M and is denoted by P(M).

The Soviet mathematician A. L. Garkavi has said [3] "Every geometric question about Banach spaces has an equivalent expression as an approximation theoretic question." For example, each closed subspace is a Chebyshev subspace iff X is rotund and reflexive [2, 8]. In this note, we give conditions on best approximation operators equivalent to X being uniformly rotund (UR) and conditions equivalent to both X and X^* being UR (i.e., X being uniformly rotund and uniformly smooth). A less general version of this result appeared in [1] in connection with convergence of alternation sequences.

In general, P(M) may be discontinuous. If X is UR, then, P(M) is continuous, and in fact, Holmes [4] has shown that in this case, the class of maps $\{P(M) \mid M$ a closed subspace of X} is uniformly equicontinuous on bounded sets. We obtain Holmes' theorem as a corollary of our result. If P(M) is actually uniformly continuous, then M is the range of a continuous linear projection [6], and so if P(M) is uniformly continuous for each closed subspace, X is isomorphic to a Hilbert space [7].

A Banach space X, is rotund iff each norm-1 linear functional is tangent to the unit sphere of X at, at most, one point. The uniqueness of best approximation follows immediately from this definition. If the dual of X is rotund, then X is smooth, i.e., for each norm-1 vector $x \in X$, there is a unique norm-1 linear functional $f \in X^*$ with f(x) = 1 = ||x||. Thus, for a smooth rotund space we have a well-defined norming map $n: S \to S^*$, where n(x)(x) = 1, and n(x)(y) < 1 for $y \neq x$. Here, S denotes the unit sphere of X and S* the unit sphere of X*.

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

If *M* is a closed subspace and $x \in X \setminus M$, then $m \in M$ is the best approximation to *x* iff $x - m \rightarrow m'$ for all $m' \in M$. Here, \rightarrow denotes orthogonality in the sense of James [5], i.e., $x \rightarrow y$ iff $||x + ay|| \ge ||x||$ for all real *a*. For a norm-1 vector in a smooth space this is equivalent to n(x)(y) = 0 because n(x) is the Gateaux derivative of the norm functional at *x*. Thus, in smooth rotund reflexive spaces, P(M) is characterized by the fact that $P(M)x \in M$ and $n(x - P(M)x) \in M^{\perp}$. Also, since *M* is a subspace, for any $m \in M$, P(M)(x + m) = P(M)x + m, and hence, P(M)(x - P(M)x) = 0.

There are several equivalent formulations of uniformly rotund. For our purposes, the following is convenient: X is UR iff for all sequences $\{x_i\}, \{y_i\}$ with $||x_i|| = ||y_i|| = 1$, if $||x_i + y_i|| \rightarrow 2$ then $||x_i - y_i|| \rightarrow 0$.

2. A CHARACTERIZATION OF UR SPACES

THEOREM 1. Let X be a rotund reflexive Banach space. X is UR iff for every sequence $\{M_i\}$ of closed subspaces and every sequence $\{x_i\}$ with $\{||x_i||\}$ convergent such that for some k > 0,

$$||x_i|| \ge ||x_i - P(M_i)x_i|| \ge k$$
, for all i ,

the following are equivalent:

- (a) $\lim_{i \to i} ||x_i|| = \lim_{i \to i} ||x_i P(M_i)x_i||,$
- (b) $\lim_{i} P(M_i) x_i = 0.$

If, in addition, X^* is rotund, then X^* is also UR iff the following are equivalent to (a) and (b) for all sequences $\{x_i\}$ and $\{M_i\}$ satisfying the hypotheses.

- (c) $\lim_{x \to 0} ||x(x_i) n(x_i P(M_i)x_i)|| = 0$,
- (d) $\lim_{i \to \infty} || n(x_i) P(M_i^{\perp}) n(x_i) || = 0$,
- (e) $\lim_{i \to \infty} || n(x_i) ||_{M_i} || = 0$,

(f) $\lim_{i} n(x_i)(m_i) = 0$ uniformly on bounded sequences $\{m_i\}$ with $m_i \in M_i$ for each *i*.

Proof. Suppose (a) and (b) are equivalent and $\{x_i\}$, $\{y_i\}$ are sequences with $||x_i|| = ||y_i|| = 1$ and $||x_i + y_i|| \to 2$. Let $M_i = \text{span}\{x_i - y_i\}$. We shall show that $\lim_i P(M_i) x_i = \lim_i P(M_i) y_i = 0$ and so

$$y_i - x_i = y_i - x_i + P(M_i)(x_i - P(M_i) x_i)$$

= $P(M_i)(y_i - x_i + x_i - P(M_i) x_i)$
= $P(M_i) y_i - P(M_i) x_i$

also converges to 0. This gives UR in X.

NOTES

Now, for each *i*, $||x_i - P(M_i) x_i|| = ||x_i - \lambda_i(x_i - y_i)||$ and $0 \le \lambda_i \le 1$. For, if $\lambda < 0$, then $||x_i - \lambda(x_i - y_i)|| \ge (1 + |\lambda|) ||x_i|| - |\lambda| ||y_i|| = 1$, while if $\lambda = 1 + \mu$, with $\mu > 0$, then $||x_i - (1 + \mu)(x_i - y_i)|| \ge (1 + \mu) ||y_i|| - \mu ||x_i|| = 1$.

However, if $0 \leq \lambda \leq 1$, then

$$\|x_i - \lambda(x_i - y_i)\| \leq (1 - \lambda) \|x_i\| + \lambda \|y_i\| \leq 1.$$

To show $P(M_i) x_i \to 0$, we need only prove that $||x_i - \lambda_i(x_i - y_i)|| \to 1 = ||x_i||$. If not, then for some $\delta > 0$, and some subsequence $\{x_k\}$, we have $||x_k - \lambda_k(x_k - y_k)|| < 1 - \delta$. However, $||x_k + y_k|| \to 2$, so for k large enough, $||x_k + y_k|| > 2 - \delta$. Thus, $1 - \delta > ||(1 - \lambda_k) x_k + \lambda_k y_k||$, and since $0 \le \lambda_k \le 1$, $1 \ge ||\lambda_k x_k + (1 - \lambda_k) y_k||$. Adding, we have $2 - \delta > ||x_k + y_k||$, a contradiction. Similarly, $P(M_i) y_i \to 0$, as required.

Now, assume that conditions (a)-(f) are equivalent, and X^* is also rotund. Let $\{f_i\}$, $\{g_i\}$ be sequences in X^* with $||f_i|| = ||g_i|| = 1$ for all *i*, and $||f_i + g_i|| \to 2$. Since X^* is now rotund and smooth, we may write $f_i = n(x_i)$ and $g_i = n(y_i)$, where $||x_i|| = ||y_i|| = 1$.

Again, letting $M_i = \text{span}\{x_i - y_i\}$, we shall show that $P(M_i) x_i \to 0$, and $P(M_i) y_i \to 0$.

From condition (c),

$$|| n(x_i) - n(x_i - P(M_i) x_i)|| \rightarrow 0,$$

and

$$|| n(y_i) - n(y_i - P(M_i) y_i)|| \rightarrow 0.$$

However, $x_i - P(M_i) x_i = y_i - P(M_i) y_i$, and so

$$\|f_i - g_i\| = \|n(x_i) - n(y_i)\|$$

$$\leq \|n(x_i) - n(y_i - P(M_i) y_i)\| + \|n(y_i - P(M_i) y_i) - n(y_i)\|$$

$$= \|n(x_i) - n(x_i - P(M_i) x_i)\| + \|n(y_i - P(M_i) y_i) - n(y_i)\|,$$

which converges to zero proving UR in X^* .

Since $||n(x_i) + n(y_i)|| \rightarrow 2$, for some sequence $\{z_i\}$ with $||z_i|| = 1$, we have $n(x_i)(z_i) + n(y_i)(z_i) \rightarrow 2$. Hence, both $n(x_i)(z_i)$ and $n(y_i)(z_i)$ converge to 1, and so, $\lim_i n(x_i)(x_i - z_i) = \lim_i n(y_i)(y_i - z_i) = 0$.

If $||x_i - z_i||$ is bounded away from zero, then letting $N_i = \text{span}\{(x_i - z_i)\}$ and using condition (e), we have $P(N_i) x_i \rightarrow 0$. Therefore,

$$\left\|\frac{x_i + z_i}{2}\right\| = \|x_i - \frac{1}{2}(x_i - z_i)\| \ge \|x_i - P(N_i) x_i\|$$
$$\ge \|x_i\| - \|P(N_i) x_i\| \to 1.$$

FRANCIS SULLIVAN

From the assumed equivalence of (a) and (b), X is (UR), and so $x_i - z_i \rightarrow 0$. Similarly, $y_i - z_i \rightarrow 0$, and so $x_i - y_i \rightarrow 0$. Since $P(M_i) x_i = \lambda_i (x_i - y_i)$, where $0 \le \lambda_i \le 1$, we have $P(M_i) x_i \rightarrow 0$, and likewise, $P(M_i) y_i \rightarrow 0$.

To show that the conditions are necessary, assume that X is UR and that $\{x_i\}$ and $\{M_i\}$ satisfy the hypotheses. First, note that the implication (b) \Rightarrow (a) is obvious.

For (a) \Rightarrow (b), we shall show that

$$\left\|\frac{x_{i}}{\|x_{i}\|}+\frac{x_{i}-P(M_{i})x_{i}}{\|x_{i}-P(M_{i})x_{i}\|}\right| \to 2,$$

and so from UR in X,

$$\left\| \left(\frac{1}{\|x_i\|} - \frac{1}{\|x_i - P(M_i) x_i\|} \right) x_i + \frac{1}{\|x_i - P(M_i) x_i\|} P(M_i) x_i \right\| \to 0,$$

and hence, $P(M_i) x_i \rightarrow 0$.

To show that the sum converges to 2, we note that since $P(M_i) x_i$ is the best approximation to x_i in M_i ,

$$\left\| \left(\frac{1}{\|x_i\|} + \frac{1}{\|x_i - P(M_i) x_i\|} \right) x_i - \frac{1}{\|x_i - P(M_i) x_i\|} P(M_i) x_i \right\| \\ \ge \left(\frac{1}{\|x_i\|} + \frac{1}{\|x_i - P(M_i) x_i\|} \right) \|x_i - P(M_i) x_i\| \to 2.$$

Suppose now that X^* is also UR and (a) holds. Then,

$$\| n(x_i) + n(x_i - P(M_i) | x_i) \| \ge n(x_i) \left(\frac{x_i}{\| x_i \|} \right) + n(x_i - P(M_i) | x_i) \left(\frac{x_i}{\| x_i \|} \right)$$

= 1 + $\frac{\| x_i - P(M_i) | x_i \|}{\| x_i \|} \rightarrow 2$,

and (c) follows.

The implication (c) \Rightarrow (d) is clear because $n(x_i - P(M_i) x_i) \in M_i^{\perp}$.

It is also obvious that (d) \Rightarrow (e), because Phelps [8] has show that dist $(n(x_i), M_i^{\perp}) = ||n(x_i)|_{M_i}||$.

For $(e) \Rightarrow (f)$ for each *i*, we have

$$n(x_i)(m_i) = n(x_i)(m_i/||m_i||) ||m_i|| \leq ||n(x_i)|_{M_i} || ||m_i||.$$

Finally, assuming (f), we have

$$||x_i - P(M_i) x_i|| \ge n(x_i)(x_i) - n(x_i)(P(M_i)(x_i))$$

= $||x_i|| - n(x_i)(P(M_i)(x_i)),$

Q.E.D.

and since $|| P(M_i) x_i || < 2 || x_i ||$, condition (a) follows.

NOTES

COROLLARY (Holmes). If X is UR and A is a bounded subset of X, then for each $\epsilon > 0$, there exists a $\delta(\epsilon, A) > 0$ such that for all closed subspaces $M \subseteq X$ and all $x, y \in A$, if $||x - y|| < \delta$, then $||P(M)x - P(M)y|| < \epsilon$.

Proof. If the statement does not hold, then we must have bounded sequences $\{x_i\}, \{y_i\}$ and closed subspaces $\{M_i\}$ such that $||x_i - y_i|| \to 0$ while

$$\|P(M_i) x_i - P(M_i) y_i\| \ge k > 0, \quad \text{for all } i.$$

Let $z_i = x_i - P(M_i) y_i$, and $w_i = y_i - P(M_i) x_i$. From boundedness, we may assume that $||z_i||$, $||z_i - P(M_i) z_i||$, $||w_i||$, and $||w_i - P(M_i) w_i||$ all converge. Now,

$$P(M_i) z_i = P(M_i)(x_i - P(M_i) y_i) = P(M_i) x_i - P(M_i) y_i,$$

and we shall show that $P(M_i) z_i \rightarrow 0$.

If $||z_i|| \to 0$, then, since $||P(M_i) z_i|| \le 2 ||z_i||$, we are done. Otherwise, for $\epsilon > 0$ arbitrary and *i* large enough, we have

$$\| z_i \| + \epsilon \ge \| z_i - P(M_i) z_i \| + \epsilon$$

= $\| x_i - P(M_i) y_i - P(M_i)(x_i - P(M_i) y_i) \| + \epsilon$
= $\| x_i - P(M_i) x_i \| + \epsilon$
 $\ge \| x_i - P(M_i) x_i \| + \| y_i - x_i \|$
 $\ge \| y_i - P(M_i) x_i \| = \| w_i \|.$

Since the same argument can be repeated beginning with $||w_i|| + \epsilon$, we may conclude that $\lim_i ||z_i|| = \lim_i ||z_i - P(M_i)z_i|| = \lim_i ||w_i||$, and from Theorem 1, $P(M_i)z_i \rightarrow 0$. Q.E.D.

REFERENCES

- 1. B. ATLESTAM AND F. SULLIVAN, Iteration with best approximation operators, *Rev. Roumaine Math. Pures Appl.* to appear.
- H. B. COHEN AND F. E. SULLIVAN, Projecting onto cycles in smooth, reflexive Banach spaces, *Pacific J. Math.* 34 (1970), 355-364.
- 3. A. GARKAVI, On Chebyshev and almost Chebyshev subspaces, *Akad. Nauk. S.S.S.R.* **28** (1964), 799–818.
- 4. R. B. HOLMES, A course in optimization and best approximation, in "Lecture Notes 257," Springer-Verlag, New York, 1972.
- R. C. JAMES, Orthogonality and linear functions in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.

FRANCIS SULLIVAN

- 6. J. LINDENSTRAUSS, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263-287.
- 7. J. LINDENSTRAUSS AND L. TZAFRIRI, On the complemented subspace problem, *Israel J. Math.* 9 (1971), 263-269.
- 8. R. R. PHELPS, Uniqueness of Hahn-Banach extensions and unique best approximation, *Trans. Amer. Math. Soc.* 95 (1960), 238-255.

FRANCIS SULLIVAN

Mathematics Department The Catholic University of America Washington, D. C. 20064 Received May 24, 1974

Communicated by E. W. Cheney

286